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ABSTRACT 
(v ay re w 

This paper examines,penalized likelihood estimation in the context of 

general regression problems, characterized as probability models with 

composite likelihood functions.  The emphasis is on the common situation where 

a parametric model is considered satisfactory but for inhomogeneity with 

respect to a few extra variables.  A finite-dimensional formulation is 

adopted, using a suitable set of basis functions.  Appropriate definitions of 

p 
deviance, degrees of freedom, and residual are provided, and the method of 

cross-validation for choice of the tuning constant is discussed.  Quadratic T 
a 

- U xcitior approximations are derived for all the required statistics. 
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SIGNIFICANCE AND EXPLANATION 

Statisticians and their clients have considerable experience 

constructing, fitting and interpreting parametric models for their data.  But 

in many situations a completely parametric model is inappropriate.  This often 

arises when a parametric relationship can be justified on grounds of theory or 

experience, but is suspected of varying slowly in time or space.  The 

statistician is then reluctant either to abandon the parametric model, which 

is credible and useful, or to force a particular dependence on time or space 

into the model, without guidance on the form of this dependence.  A semi- 

parametric approach is needed. 

In this paper the method of maximum penalized likelihood is advocated for 

such problems, combining the ideas of fitting parameters by maximizing 

likelihood whilst smoothing with respect to the extraneous variables.  This 

method is well-known in non-parametric linear regression, where it includes 

spline smoothing, and also in such problems as non-parametric density 

estimation.  The present context is a rather general class of regression 

models, allowing nonlinearity, statistical dependence, and arbitrary error 

distributions. 

A basic algorithm for fitting the model is derived, and asymptotic theory 

briefly dicussed.  Various related statistics facilitating assessment of 

goodness-of-fit and determination of the appropriate degree of smoothing are 

constructed, together with quadratic approximations likely to make numerical 

computational economical. 

The responsibility for the wording and views expressed in this descriptive 
summary lies with MRC, and not with the author of this report. 
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PENALIZED LIKELIHOOD FOR GENERAL SEMI-PARAMETRIC REGRESSION MODELS 

Peter J. Green 

1.  INTRODUCTION 

It frequently arises that a statistician has some faith in the validity 

of a certain parametric statistical model for his data, but for some suspected 

inhomogeneity with respect to one or more extraneous variables.  Typically, 

such variables might represent space or time, the relationship between them 

and the response is not of primary interest, and the statistician is inhibited 

from extending his parametric model to encompass them because of a lack of 

experience, information or theory about the form of their relationship.  A 

simple example might arise with binomial data from different geographical 

locations where it might be quite reasonable to model the response probability 

as a logistic regression on various explanatory factors or covariates, but 

influenced also by environmental effects, unknown in form but believed to vary 

smoothly with location. 

In such situations, procedures derived from penalized likelihoods (Good 

and Gaskins (1971), Silverman (1984)) may well be appropriate.  The purpose of 

this paper is to examine properties of such methods in the context of the 

rather general class of regression models used by Green (1984), characterized 

as probability models expressed as composite likelihood functions.  (This is 

not to claim that such a view of regression is universally appropriate).  The 

methods discussed combine the ideas of fitting the parametric part of the 

model by maximizing likelihood whilst smoothing with respect to the extraneous 

variables. 

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. 
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We consider a log-likelihood function h{y,\\i)     for the data y in term 

of a n-vector of predictors i|».  It will be helpful to allow the 

dimensionality of the data vector to be greater or less than n.  The form of 

this probability model will not be seriously questioned, but rather the focus 

of attention will be on the dependence of <f on explanatory factors and 

covariates, symbolised by x, and extraneous variables, denoted by t. We 

suppose that i|> has a prescribed functional form in terms of x,t, a 

p-vector of unknown parameters ß,  and an unknown real-valued function y 

defined on the space in which t is measured (typically R  or R2). 

Thus the complete model is 

L(y;i|>(x,ß,t,Y)) - L(f(ß,Y>) , (1.1) 

say, where the observed y,x and t may be omitted from the notation.  Here 

only 8 6 r and y,    lying in some prescribed linear space of functions 

6, are unknown and our principal interest is in 0. 

For an example, consider a logistic regression model in which the 

'intercept' term varies in time. Then if the ith observation is of y^ 

successes out of m^ trials, with covariates  {x. .} recorded at time t^, 

we would write 

n 
M*> - I     {y.log «|>. + (m. - y.)log(1 - \|» )} 

i«1 

where 

•i - {1 + «*P(- l  Xijßj " Ytt^)} 
-1 

This simple problem is typical of many where maximum likelihood leads to over- 

fitting, in the absence of any restriction on the form of the function y.     At 

least there will be unidentifiability of parameters; possibly a 'Dirac 

catastrophe'.  In the context of density estimation, Good and Gaskins (1971) 
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proposed maximizing instead the penalized likelihood 

P = L(i|>(3,Y)) - -1 XJ(Y) (1.2) 

where J is a roughness penalty, increasing as the function y becomes less 

smooth, and X is a non-negative tuning constant or hyperparameter which may 

be adjusted to control the smoothness of the fitted y. There is of course a 

Bayesian interpretation; see Section 4. 

If the likelihood L is that of independent observations y<# Normally 

distributed with means t|>.  linear in 0 and Y(t. ),  then this penalized 

likelihood approach is equivalent to a semi-parametric linear regression as 

proposed by Green, Jennison and Seheult (1983, 1985) in the context of 

agricultural field experiments, Bngle, Granger, Rice and Weiss (1983), in an 

economic problem and Wahba (1984), who with co-workers has developed a 

considerable body of theory for such 'partial-spline' methods.  Use of 

penalized likelihood in simple generalized linear models is discussed by 

O'Sullivan in his thesis (1983), by O'Sullivan, Yandell and Raynor (1984) and 

by Silverman (1985).  Leonard (1982) considers such methods for a variety of 

curve estimation problems from a full-blooded empirical Bayesian 

perspective.  In all of these papers the parametric part of the model  (x,ß) 

is not present, but Wahba (1985) remarks that the ideas of partial splines may 

be combined with penalized likelihood for generalized linear models.  In none 

of these papers in the general regression model (1.1) addressed, and typically 

identification of  "Y  is not regarded as of subsidiary importance to the 

efficient estimation of  0. 

-3- 
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2.  THE ESTIMATION PROCEDURE 

We begin by apparently compromising the generality of prescription of our 

problem.  As it stands, (1.1) allows the predictor i)    to depend on infinitely 

many values of the function y.     In practice, therefore, discretization will 

be necessary at some stage.  Following a suggestion of Leonard (1982), in 

maximizing (1.2), we will restrict Y to lie in a finite-dimensional subspoce 

of  G,  namely  F = span{<(>., j = 1,2,...,q},  for a prescribed set of  q 

basis functions.  We write 

6(ß,£) = i|/(ß, I    £••.) , 
1-1  J D 

(2.1) 

and will further restrict attention to roughness penalties of the form 

J[   L    C.+.J = C K£ for some fixed q *  q non-negative definite matrix K. 
j=1  D : 

It may seem that we are abandoning our intended semi-parametric 

framework, but it should be stressed that q,  while it may be somewhat less 

than n,  will still be  'large', and parametric estimation of  £  will not be 

appropriate.  Further, the intention is that  F  and G  should in practical 

terms be indistinguishable.  This will entail appropriate choice of  {$ .}  as, 

for example, a large class of orthogonal polynomials or trigonometric 

functions in t.  This choice will depend on the observed values of  t,  and 

will also determine  K.  The precise quadratic form of the roughness penalty 

is hardly necessary in what follows, but it simplifies the algebra and is not 

likely to make any practical difference. 

There may in fact be no restriction at all.  In non-parametric 

regression,  G  is typically a reproducing kernel Hubert space, on which  J 

is a squared semi-norm.  Suppose ty    depends only on {y(t.  ), i = 1,2,...,q}. 

Then since 

.4. 
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min{j(Y) : Y(ti) - S^ i • 1,2,...,q} - ?TK5 

for a certain K,  and we may choose  F to consist of a basis of spline 

functions with <fr.(t,) • 6,.» the original and the restricted problem have 

the same solution so far as values of ß and of  {y(t. )}  are concerned. 

We therefore maximize 

P = L(6(ß,5)) - \  X5TK5 (2.2) 

over $ e RP,  £ e Rq, where 6 is a prescribed «"-valued function.  This 

revised formulation has the further advantage of allowing certain new problems 

into our framework, that could not otherwise be naturally described with a 

vector of predictors \|i of finite length:  see example (d) in the next 

section. 

We will only be concerned with problems where likelihood methods are 

appropriate: we suppose sufficient regularity that L is approximately 

quadratic near the 'true values'  ß ,£ .  A modification to an iteratively 

reweighted least squares algorithm derived from the Newton-Raphson method, 

with Fisher scoring, (see Green, 1984) should therefore be appropriate. 

Write 

3L  .    .  32L i   _   39  _   36 

The scores  u form an n-vector, and the matrices  A, D,  and E are 

n x n,  n x p and n x q.  All of these quantities in general depend on  ß 

and £,  (in the case of u and A only through  6),  but these dependencies 

will be suppressed from the notation.  The expectation is taken at the current 

values of  6 and £<  Differentiating (2.2) gives the modified likelihood 

equations 

DTu » 0 (2.3) 

ETu • XKC . 
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Their solution gives our required maximum penalized likelihood estimates 

(MPLE's)  6» £.  Typically these equations are nonlinear and require iterative 

solution.  The Newton-Raphson method with expected second derivatives involves 

successively replacing trial estimates  (6,5),  at which u,A,D and E are 

evaluated, by  (6*,£*) where 

fDTAD   DTAE     uS* - ß\        (DTU      \ 

EAD   EAE+XK       *     E u - XK£ 

or, equivalently, 

O - «a 
where 

and 

T 
G = H + ^0   \x)'     V  = ^T^A[D : E] 

Y - A~1u + Dß + E£ . (2.5) 

These equations have the form of a combination of weighted normal equations, 

for &*,  and generalized ridge regression equations, for 5*.  The two 

ingredients are found separately in Green (1984) and O'Sullivan, Yandell and 

Raynor (1984).  See also Silverman (1985, Section 8.1). 

We can now move towards stating conditions on the model (1.1), (2.1) for 

T this approach to be applicable.  First represent K as  L L,  where  L is 

r x q of full rank r,  which is usually less than q.  If so, then K has a 

non-trivial null space:  Let T be q x (q - r)  such that  LT = 0 and 

[LT : T]  is non-singular.  Our conditions are that for all  ß,£, the 

matrix A is non-singular, and D,E and  [D : ET]  have full rank p,q 

and p + q - r  respectively.  We may then proceed with any positive finite 

X:  the matrix G is non-singular.  Convergence of the iteration (2.4) is 
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not guaranteed, but in practice will usually occur rather rapidly for sensible 

initial values«  The algorithm has at least a fixed-point justification:  if 

(2.4) gives  ß* • ß  and Z*  = Z,     then (2.3) is satisfied. 

Jointly with Or. Brian Yandell, the author is developing various 

implementations of the basic algorithm (2.4, 2.5).  Details will appear 

elsewhere. 

3.  SPECIAL CASES 

The general model (1.1) makes no assumptions about the independence of 

random terms, or additivity and linearity among systematic components.  Of 

course such simplifications are sometimes available.  If the log-likelihood 

L is that of n independent observations  tyA} each indexed by the 

corresponding i|). ,  then A is diagonal.  If  6  is linear in  ß or  £, 

then D or E will be constant.  Such properties may be exploited in 

algorithms, but do not affect a general treatment, 

(a)  The Linear Normal Case 

If the observations y are independently Normally distributed, 

2 
y ~  N(8,o I),  with a linear parameterization  6 = Dß + E£,  then D and 

-2 2 E are constant, and A = a    X«  The scale factor  0  factorizes from both 

sides of (2.4), so may be ignored : this is an example of a more general 

phenomenon : see Section 9.  The artificial response  Y in (2.5) is 

identically y,  and no iteration is necessary.  If  E,£,X and K are 

omitted, we have the ordinary linear model.  If  D and  ß ari omitted 

instead then we have a model including ridge regression (when K = I,  we 
A     T       — 1 T obtain  5 • (E E + Xl)  E y)  and spline  toothing (as described in 

Section 2).  With both  D and E = I present, this covers the least-squares 

-7- 
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smoothing approach to the analysis of agricultural field trials due to Green, 

Jennison and Seheult (1983, 1985).  They used a roughness penalty based on 

differencing £  from neighbouring plots, for example 

e^ = i (€t - 25i+1 + si+2)2 (3.D 
1 

In this application,  D represents a designed experiment, and the resulting 

methodology may be related to other more classical approaches (see Green, 

1985). 

In all these special cases, it may be more natural to focus on least- 

squares rather than Normal theory/maximum likelihood as the basic principle. 

(b) Logistic Regression. 

To continue the example from Section 1, with now 

9i = {1 + exp(- I  x..0. - Cj}"1; we have u£ = (y. - m.^.. )/{9.. (1 - 6..)}, 

A is diagonal with Ai:i = m./{9.(1 - 9)}/  E is diagonal with 

Eii " ei*1 " ei)'  and Dij = 9jL(1 - ei)xi .  The equations (2.4) are no 

longer fixed and iteration is necessary.  An appropriate form for K will 

depend on the temporal or spatial configuration of the  {t.}:  see Section 4. 

(c) A Grouped Continuous Model. 

For non-parametric regression of ordered categorical data on a single 

explanatory variable, the following model may be appropriate.  For 

r = 1,2,...,R we have a S-vector multinomial response  {y  , s = 1,...,s} rs 

with associated probabilities  {p  }  assumed to satisfy 

s 
V p . = Y(ß - s ) 
> *ri     s  *r 

for some prescribed distribution function V,  where  £ = y(t   )  and t  is 

the value of the explanatory variable for this response.  This grouped 

continuous model is equivalent to the assumption of a latent continuous 

-8- 
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variable with distribution function *(• - £r)  which is categorized into S 

classes at the unknown outpoints  {ß..,ß2,...,ß  .} to yield the observed 

frequencies  {y  }.  See McCullagh (1980) for a complete discussion.  This 

falls into our present framework if we take 8 as 

{6  - ß - E ; r = 1,2,...,R; s = 1,2,...,S - 1},  so that 
rs   s   r 

a.- " f(0  )-¥(6   _).  The matrix A  is no longer diagonal, but D and rs     rs      r s-1 

E have a very simple form.  For identifiability, one component of  E  must be 

held fixed and omitted from equations (2.4). 

(d)  Multiple Inhomogeneous Poisson Processes 

Suppose m point processes are observed:  the i  process is observed 

for the time interval  (si,ti],  and yields events  tyi)c» 
K • 1/2,...,^}. 

The observation intervals may depend on the realization:  for example, each 

process may be observed until the first event, as in survival analysis.  If 

the processes may be modelled as independent inhomogeneous Poisson processes 
p 

with rates <|i( \    x. .ß,Y(t)) at time t for the i  process, involving an 
j=1 1D D 

unknown linear combination of covariates  {x..},  the appropriate log- 

likelihood is 

m  n. m  t. 
L- I       I1 log *(); x  6 ,Y<yik>) - I     j  * *Q x $   ,Y(y))dy . 

i=1 k=1 iD 3 1K    i=1 Si      
1D : 

Here,  t is prescribed, but  ß and the function  Y are to be estimated. 

Again, a Dirac catastrophe prevents maximum likelihood estimation of  ß 

without restrictions on  Y-  Under the assumption that the rates are simply 

expQ x..ß. + Y(t))  with appropriate stopping rules, this is the 

proportional hazards model (Cox, 1972, Anderson and Senthilselvan, 1980), and 

estimation of  ß  is possible via partial likelihood.  Otherwise, the approach 

described in Section 2 may be necessary. 

-9- 
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4.  CHOICE OF ROUGHNESS PENALTY. 

Various authors have remarked in different contexts that choice of the 

amount of smoothing  (A in equation (2.2)) is more important than the 

smoothing kernel K itself.  This might be amended by adding that the null 

T 
space of the roughness, the space  {£ : 4 K£ = 0} may also be important; for 

vectors in this null space, since they are not penalized in (2.2), are 

implicitly also fitted as covariates. 

Spline smoothers would choose a penalty of the form 

t (m)    2 
J(Y) - /  (Y   (t)Tdt (4.1) 

for a curve on \ single-dimensional variable.  As mentioned in Section 2 this 

is equivalent to our approach; the kernel K is given by 

(m) (m) /I in J     imj 
•J '(t)** '(t)dt   i,j = 1,2 , • • • /q 

the rank of K will be q - m for any spline basis k = 1,...,q},  the 

null space of K consisting of those £ for which  \    ^v^k is a P°lynomial 

k=1 
of degree  (m - 1)  or less. 

Wahba (1978) derives spline smoothing from a Bayesian model in which an 

appropriate prior, which is partially improper, is constructed on a space of 

smooth functions; see also Silverman (1985).  In the notation above, the prior 

is a multivriate Normal distribution for  £ with mean 0 and inverse 

variance matrix AK.  Impropriety of the prior is equivalent to deficient rank 

in K.  In our present partially pai .metric context, with an uninformative 

prior for  0 as an additional ingredient, the maximum penalized likelihood 

estimate for  (3,5)  is the mode of the corresponding posterior 

-10- 
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distribution.  We can make the prior more explicit, whilst avoiding 

impropriety, as follows.  Let L and T be as constructed in Section 2; then 

we can generate the prior for E, as 

T   T -1 
(4.2) 5 = T6 + LT(LLT)~1e 

where 6 is a fixed  (q - r)-vector and e an r-vector of zero-mean, 

uncorrelated Normally distributed random variables with variance X  . We can 

T 
see that the penalty term  X£ K?  is indeed twice the negative of the 

appropriate log-likelihood term. 

Leonard (1982) provides a more completely Bayesian approach for the non- 

parametric case, again using a Gaussian process as a prior for y. 

specifically he recommends an Ornstein-Uhlenbeck process, with two 

hyperparameters in place of  X,  for the difference between the derivative of 

Y and a prescribed or estimated base curve.  The full empirical Bayesian 

approach allows estimation of the hyperparameters. 

If the observations are located at equally-spaced  {t.} on a line, the 

squared mtn derivative penalty (4.1) will in practice be indistinguishable 

from that involving m  differences, for example (3.1), with a basis such that 

<$.(t.) = 6...  Use of other roughness penalties was also considered by Green 

et al. (1985). 

When, and only when, the log-likelihood L is that of a Normal 

distribution with expectation 6 linear in  £,,  addition of the roughness 

penalty corresponds to use of a 'random effects' model for E,,    or 

equivalently, so far as  0 is concerned, to modification of the assumed 

variance structure for y.  See Green (1985). 

Whatever form of K is chosen, the tuning constant A controls the 

relative impact of roughness, as judged by K,  and error, determined by the 

likelihood.  The extreme cases  X * • and 0,  between which we wish to 

-11- 
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compromise, can be interpreted as follows.  As k •*• <*>,     the likelihood is 

maximized subject to a roughness penalty of  0,  that is we restrict to the 

purely parametric model  L(6(ß,TÖ)).  As  A * 0,  the problem degenerates to 

T 
the minimization of  £ K?  subject to the 'interpolation' condition that 

6(ß,£)  maximizes L(6(@,£)):  whether this is a constraint on £  depends on 

the form of  8. 

5.  ASYMPTOTICS AND STANDARD ERRORS 

For various reasons, a rigorous treatment of the asymptotic theory of the 

maximum penalized likelihood estimates  (6,4)  is extremely difficult:  the 

arbitrariness of the probability model, and its parameterization, the presence 

of the roughness penalty, and flexibility over which parameter dimensions the 

asymptotics are to be with respect to.  We introduce a hyperparameter N, 

upon which q and n may depend, and consider the limit  N •*•  °°.  The 

dimension p of the parameter  ß will remain fixed, but other quantities 

such as  X and K may implicitly depend on N.  It is clear that we do not 

require n > °°:  for example in parametric logistic regression the standard 

asymptotic theory applies if either n * » or min{m.} • <».  For the purely 

parametric case, a rather general result is given by McCullagh (1983), which 

we believe might be extended to the present case if q remains fixed as 

N • <*>.  His condition is essentially that N DTAD has a non-singular limit. 

In the spline smoothing case the usual asymptotic framework is one where 

the locations  {fcj} Of the observations become increasingly dense in a finite 

interval as  N * •  (Craven and Wahba, 1979» Cox, 1984).  This is true also 

for the non-Normal fully parametric case:  see O'Sullivan (1983) and Cox and 

O'Sullivan (1983).  However for the partial-spline/least-squares smoothing 

-12- 
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case it is intuitively plausible that estimates of at least certain contrasts 

of  0 should be consistent and asymptotically Normal even when the spacings 

between the  {t.} do not decrease. 

Here we will only attempt crude heuristics.  Suppose that the model 

(This is 

restrictive: we would hope to estimate  0  satisfactorily without such 

L(9(0,5)) is correct, so that there are true values 0O»5O« 

strong assumptions on the non-parametric part of the model). We will use the 
A 

symbols  *,   etc., on other quantities, so that for example u means 
A  A A   A 

u(6(0,5)).  For some point  (5,5) between  (0,5) and  (0o,So)» we have by 

Taylor's theorem: 

o o 

3P 
"50 

i£ 
H 0,5 

dp 
70 

dp 
"5? o o 

32P 

»({)({)' 
0-0. 

0,5 V 5 - 5. 

E u  - XK5 
o o     o 

where here, and later, we use ~ to mean asymptotically equal, under 

unspecified assumptions.  We have E(uQ) = 0,  var(uQ) * AQ,  and 

G ~ G    ~ G,    A_ ~ A,  D„ ~ D»  E_ ~ E.  So if the central limit theorem 

applies in the usual way, we would expect that the asymptotic distribution of 

A   A 

(0,5)  is approximately 

~ N 

A A 

where G and H may be estimated by G and H. 

(5.1) 
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Obviously much remains to be proved, but these arguments do suggest that 

we may at least use (5.1) to derive nominal standard errors for ß,  assuming 

that we have chosen X depending on N in such a way that the penalized 

likelihood estimates are consistent. 

6.  DEVIANCE AND DEGREES OF FREEDOM. 

In the spirit of the previous section, an analogue of the usual 

likelihood ratio statistic may be constructed, under a regularity condition. 

We need the notion of 'saturated model' to be well-defined, in the following 

way. Let i^ax • sup L(8) • L(8'),  say, be the maximum value attained by 
e 

1.(8}  when the n-vector 8 of predictors is freed from its functional 

dependence on 8 and £.  We suppose l^ax <  co«  Define the deviance 

associated with a particular regression function  6(ß,£)  and given values ß 

and £ by 

A - 2{Lmax - L(8(8,£))} ; 

note that because of the penalization, our estimates do not minimize A,  but 

rather the penalized deviance 

A + XCTK5 = 2{L   - P(ß,5)} . 
max 

In certain circumstances the information matrix A may be approximately 

constant, and the likelihood approximately quadratic, near 6'  and 61H,U, 
A A   A A A 

in which case since u(8') • 0 we have u «• u(8(ß,£)) ~A(8' - 8), whence 

A ~ u A u. We will refer to this latter expression as the linearized 

deviance. 

Just as is standard practice with generalized linear models (Neider and 

Wedderburn, 1972), model selection in the form of choice of a regression 

function  8(8,£)  may be based on nominal significance tests using the 

approximate asymptotic distribution of the deviance.  Similar heuristics to 

•14- 
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2 
those used above justify a X  approximation on an appropriate "equivalent" 

degrees of freedom, which will not in general be integral, defined via the 

asymptotic expectation of the deviance. 

We have 
AmA  i A T -1 

E(A) ~ E(u A u) . 
m 

A A A A 

But A ~ A  and u~u. -A (D(ß-ß )+£(£-£)),  so from the 
= o       =ooo     o    o     o 

A   A 

asymptotic distributions of  (6,5)  in Section 5, we find 

T 
E(U

T
A"

1
U) ~ (o : XK£0)V

1(D )AA
_1

A(D : E>G~
1
(A°   ) 

E * 0 

• tr{A"1[(i - MD : iic-'Awi - (D : E)G-
1
(

D
^)A)]} 

E E 

- tr(M2) + Q1 - Q2   say 

T 
where I • (l • I (D ' E)G  ( T]B),  B is a square root of A • BBT,  and 

E 

C - CT{XK{ETAE + XK - ETAD(DTAD)"1DTAE)~1PXK5 •  Note that  0 < Q•  < Qs + 1, j   o o j   jT • 

with mutual equality if and only if K£ =0.  Turning now to the penalty term 

evaluated at the MPL estimates, 

*o 
E(xiTKO = [c* + (o : (-XK5O)

T
)G

_1
(J)]XK[5O + (o : DG~

1
(.X^ )] 

• tr(XK(0 *. I)G'1(DJA(D *. E)G~1(J)) 

- tr(M - M2) + Q0 - 2Q1 + Q2 . 

Thus the penalized deviance has asymptotic expectation 

E(A + A?TK5) ~ tr(M) + (QQ - Q,) . 

The utility of these expressions is limited by presence of the correction 

terms involving quadratic forms in the unknown true  £-.  Three possible 

-15- I 
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approaches include (i) neglecting these terms, leading to an underestimate of 

degrees of freedom and hence conservative tests, (ii) estimating these terms 

from the data, a necessarily hazardous activity, or (iii) replacing them by 

their expectations under the prior distribution (4.2) that was used to justify 

the penalty function. 

T T For the latter approach, we have E(X5 K£ ) - E(Xe e) = r,  and o o 

for any q x q matrix N,  E((XK£ )TN(XK£ )) = E(XLTe)TN(XLTe)) 

= tr(XKN).  Thus E(Qj) = t^,  say, where tQ • r,  and tj = 

tr{XK(ETAE + XK - ETAD(DTAD)"1DTAE)P     for  j = 1,2,3,... .  But a little 

manipulation reveals that tr(M^) * n - (p + q) + tj  for  j = 1,2,3,...,  so 

that under the prior (4.2) the terms in the penalty function have asymptotic 

expectations, at  (B,£),  with the simple forms: 

say 

E(uTA~1u) ~ n - (p + q) + t = tr(M) - v , 

E(X£TKS) ~ tQ - t1 - n - (p + q) + r - v 

It may be shown that for any  X, v  satisfies the inequality 

n - rk[D I E] < v < n - (p + q) + r . 

(Its exact form as a function of X when D,E,A and K are constant is 

given in Green (1985).  In the notation of that paper,  R is  ET and V is 

I + X"1E(ETE)"1LT(L(E,rE)'"1LT)"2L(ETE)"1ET).  Combining this with the 

» 
information above about asymptotic expectations supports the use of  v  as a 

surrogate error degrees-of-freedom.  Parameters corresponding to the columns 

of  [D I ET]  (i.e.  0  and  6)  are always fitted, requiring  (p + q - r) 
> 

degrees of freedom, and the remaining n-(p+q) + r - v  are associated 

\ with the non-parametric component of  £ permitted by  X < ».  Of course, no 
i 

formal distribution theory involving  v is known:  it should only be used 
> 

informally to gauge model adequacy as measured by the deviance. 

• 
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7.  CROSS-VALIDATION 

Model selection by means of cross-validation was discussed in a 

systematic way by Stone (1974).  Its use in determining an appropriate degree 

of smoothing in non-parametric regression problems has been enthusiastically 

espoused by Wahba and co-workers in the past ten years, and, in a refined form 

known as generalized cross-validation (GCV) (Wahba, 1977) seems to have become 

the de facto standard approach.  In the linear problem, GCV has additional 

invariance over the ordinary version, it has now become computationally 

practicable, and it is known to provide an asympotically optimal degree of 

smoothing in a predictive mean-square sense.  o'Sullivan (1983) generalizes 

the application of GCV to generalized linear models by transcribing a formula 

from the linear case, without deriving the criterion afresh from its plausible 

first principles.  Thus we attempt to do here, for our more general class of 

regression problems. 

The basic idea in cross-validation is to delete one observation at a time 

from the data set, and endeavour to predict it from the model as fitted to the 

remaining observations.  The smoothing parameter is chosen to optimize the 

overall quality of prediction.  The appropriate generalization of this 

'delete-one' operation in our model L(8(ß,£))  consists of decoupling each 

component of 6  in turn from its dependence on  ß and £.  The predictive 

discrepancy will be measured in likelihood or deviance terms. 

The decoupling is achieved by the introduction of dummy covariates.  For 

some genrality, let  F be an arbitrary n x f  matrix,  f > 1,  and let 

p, £ and  T maximize the penalized decoupled likelihood 

L(8(#,?) + FT) - — £ K£.  We define the predictive discrepancy in the column 

space of F as the non-negative quantity 

A+(F) = 2{L(6(?f?) + FT) - L(8(?f?))} ; (7.1) 
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if this is zero then the decoupled estimates  (3#?)  coincide with  (ß,?)»  We 

will average A (F) over an appropriate set of directions to give an overall 

predictive discrepancy, but first we obtain a linear approximation for 

&f(F). 

At  (8,S,T) we have 

Du = 0 

E u = A.K5 

npw 
F u = 0 

where 

u - u(6(?,5) + FT) 

~ u(6(&,£)) - A(D(|J - l)   + E(5 - i) + FT) . 

But we know that D u = 0  and E u = AKC»  so by subtraction, treating A,D 

A   A 

and E as fixed (evaluated at  (3,5)/  say), we have 

T T T 
D AD      D AE       D AF 

ETAD    ETAE + AK    ETAF 

F AD      F AE       F AF /  \  T  /     \ F u 

whence 0 and X   may be eliminated to give 

T 
T 2  [F AF - F A(D . E)G  ( „JAFJ  F u = (F BMB F)  F u . 

E 

So, by linearizing the expression (8.1) and noting that  (p,5»Y) maximizes 

the first term, penalized, we have 

A (F) ~ (FT)XA(FT) - u F(F BMB F)  F AF(F BMB F)  F U . (7.2) 

This expression measures the result of decoupling any number f of components 

of  8»  for an analogue of delete-one cross-validation we set f = 1.  For 
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example if F • e**',  the unit vector in the itn coordinate direction, 

t  (1)      Aiiui 
A (el ')   

{(BMBT)i:L}
2 

If A is not diagonal, we may prefer to rotate jf1    and have 

Ät(CB-,)Vi>)s<B-,u)^i • 

In generalized cross-validation the individual predictive discrepancies are 

combined over different directions by a weighted sun enjoying certain 

invariance properties.  Let w^ = M^/tr(M),  so that [ »j » 1,  and define 

the GCV criterion 

r       2 t   -1 T (i)     "T -1* 2      2 
V(X) = I    w^AT((B ')V ') ~ (u A u)/(tr(M)P ~ A/v  . 

i-1 

We can choose X to minimize this quantity, which has the same form as that 

used by 0'Sullivan (1983). 

That this is the correct weighting of the individual predictive 

discrepancies can be seen by examining the invariance properties of V(X). 

He-parameterization by invertible appropriately differentiable transformations 

of 6,3 and £ does not change the model; it alters u,A,D and E,  but 

*T -1* 
u A u, A, M and v remain invariant, and so therefore does V(X). 

One justification for use of the GCV criterion in the linear (spline) 

case is provided by the result of Craven and Wahba (1979) stating that such a 

criterion is asymptotically optimal in the sense of minimizing the mean- 

1  n 2 
squared error R(X) - — £  (Y(ti) - "^(t^) •  (Of course, this property may 

i=1 
be shared by many other criteria for choosing A).  The only natural 

expression of  R(X)  in likelihood terms seems to be via the divergence 

defined by Kullback and Leibler (1951).  We define  R(X)  so that 
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nR(A) - 2E- (L(8 ) - L(6)) ~ (8 - 8 )TA(8 - 8 ) ~ (u - u )TA~1(u - u ) 
öo        =o       o=o o 
o 

to give an appropriate weighted m.s.e. for  (6»?)/  which makes connections 

with the linearized deviance apparent.  Cross-validation and Kullback-Leibler 

distance are also discussed by Bowman, Hall and Titterington (1984). 

0'Sullivan (1983) sketches an argument suggesting that the Craven and Wahba 

result extends to the generalized linear model case, with a definition of 

R(A)  equivalent to the above; it therefore seems likely that if his proof 

could be rigorized, it might apply to the present more general setup as well. 

Note that by arguments similar to those of Section 6, we have 

E(R(X)) ~ Q1 - Q2 + tr((I - M)
2) , 

whose expectation under the prior for £  is just tr(l - M). 

8.  RESIDUALS. 

How best to define residuals depends very much on the purpose co which 

they are to be put.  The multitude of definitions available even in simple 

linear regression models (see Cook and Weisberg, 1982) strongly suggests that 

even more alternatives will be available in our present general context.  Here 

we attempt only a limited discussion. 

We seek residuals primarily for diagnostic purposes, and, :.n view of our 

reliance on the likelihood function L(9(ß,£)),  prefer these to be 

likelihood-based and associated with the predictors  8  rather than directly 

with the observations.  Use of such residuals for diagnosis of data-inadequacy 

will require inspection of the likelihood function to determine the data- 

points instrumental in giving a particular component of  6 a large 

residual.  Detection of model inadequacy can proceed more directly, and note 

that we not desire invariance of residuals to transformation of  6  itself. 
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The likelihood emphasis suggests concentrating on the deviance A, 

defined in Section 6.  Restricting attention to one or more particular 

components of  9,  define 

A(F) = 2{sup L(6(ß,£) + FT) - L(9(ß,£))} , (8.1) 
T 

twice the maximum increase in log-likelihood attained by freeing 6  from its 

dependence on  3 and  £,  in the directions spanned by columns of  F.  If 

F is non-singular,  A(F) = A.  Note that A(F) < A (F);  the sole difference 

between the two quantities lies in the inclusion or exclusion of the 

corresponding components of 8 from the fitting of the model.  Also note that 

the maximum penalized-likelihood ratio statistic 2{sup P(6(f$,£) + FT) 

- sup P(8(ß,£))} lies between A(F) and A (F). 

Choosing a single coordinate direction e'x'  for F,  we obtain the raw 

deviance and discrepancy A(e   )  and A (e   )  respectively, which we 

abbreviate as A.  and A.•  The raw deviances A.  have been customarily used 

to define residuals in generalized linear models (see discussion in Green, 

1984).  Finally, we denote the signed square-roots by z±  = sign(T__)/A.  and 

z. * sign(T   )/ A., where T    denotes the value of  T in the 
i    "  max   i max 

maximization of (8.1) and in (7.1) respectively. 

These concepts tie in well with other treatments of residuals.  In the 

case of Normal linear regression (with known variances = 1, say, for 

simplicity),  z^ and z  are just the ordinary and predicted residuals, 

respectively, of Cook and Weisberg (1982, Chapter 2).  These are known to be 

correlated, and improperly standardized for variance.  Cook and Weisberg point 

out that z-  and z  respectively under- and over-emphasize discrepancies 

for high-leverage data points.  This difficulty will persist in the more 

general cases. 
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When y  is distributed Normally with expectation  8 = Dß  and known non- 

diagonal variance matrix V we find 

zL  = {V_1(y - e)}.{(v-1).i}"
1/2 

and 

z[  = (v'1(y - e)}i{(v"
1)..}1/2{(v"1 - V"1D{DTD)"1DV1

)..}"
1 

which are in fact yi standardized by its expectation and variance assuming 

the parameters to be equal to their estimates with and without yi# 

respectively, conditional on the other components of y. 

In contrast to Jgfrgensen (1984), we believe that the use of unconditional 

moments in this standardization is inappropriate for dependent observations. 

For these examples, the linearization leading to (8.2), and by a simpler 
AT   T   — 1 T* argument to a(F) ~ u F(F AF)  Fu involves no approximation.  In general, 

when the likelihood is not quadratic, replacing A.  and a.  by these 

approximations leads to different residuals z^ and z .  The former have 

been called 'score residuals' (Jorgensen, 1983).  But as pointed out by Green 

(1984), these score residuals are not appropriate when the quadratic 

approximation is badly wrong:  for example, they are not monotonic functions 

of the observations in linear regression with a prescribed error density that 

is not log-concave. 

9.  NUISANCE PARAMETERS. 

The approach to penalized likelihood estimation described here can handle 

with no difficulty certain types of nuisance parameter entering the 

probability model in addition to the predictors  6.  Suppose, following 

JfJrgensen (1983) that 

L - L(y>6,<) - c(yjic) + o(ic)t(y»e) 
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where  0(  ), which we might term the precision parameter, is a scalar 

function of the possibly vector-valued nuisance parameter tc.  See also Green 

(1984).  This is in a sense the ultimate generalization of the property of 

generalized linear models in which the scale parameter factors out from the 

fitting procedure and is estimated at convergence from the deviance.  Examples 

include the variance in the Normal distribution, the index in the gamma 

distribution, and also the extra parameter often allowed as a modification of 

the binomial or Poisson distributions to allow for 'over-dispersion'. 

The maximum penalized likelihood estimates of  ß and  £ now satisfy 

T* 
OD u = 0 

OE u = XK? . 

Fisher scoring is no longer available necessarily, because the expectation of 

a2t 
t(y?8)  will in general involve K,  but if we write  A •  — then 

aeeT 

neglecting the second derivatives of  6 with respect to  0 and £,  (the 

"linearization method" of J^rgensen (1983)) we obtain the approximate Newton- 

Raphson iteration 

D AD    DAE W 0* \    / DAY 

ETAD    ETAE + 0~1XK/\5*/    \ ETAY 

demonstrating that  6 and  £ can be estimated without paying any attention 

to the nuisance parameter K,     except that the value of the tuning constant 

X  is now effectively measured with respect to the unknown precision o,  a 

consequence that is not likely to be of any serious concern. 

Acknowledgements: I am indebted to Tom Leonard for useful discussions on a 

Bayesian interpretation of the decoupling in Sections 7 and 8, and to Brian 

Yandell for suggestions on computing methods. 
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